平方根2教學設計
學習目標:
1、在實際問題中,感受算術平方根存在的意義,理解算術平方根的概念,算術平方根具有雙重非負性
2、會用計算器求一個數的算術平方根;利用計算器探究被開方數擴大(或縮小)與它的算術平方根擴大(或縮小)的規律;
學習重點:理解算術平方根的概念
學習難點:算術平方根具有雙重非負性
學習過程:
一、學習準備
1、閱讀課本第3頁,由題意得出方程x= ,那么X= ,
這種地磚一塊的邊長為 m
2、正數a有2個平方根,其中正數a的正的平方根,也叫做a的算術平方根。
例如,4的平方根是 , 叫做4的算術平方根,記作 =2,
2的平方根是“ ”, 叫做2的算術平方根,
3、(1)16的算術平方根的平方根是什么? 5的算術平方根是什么?
(2)0的算術平方根是什么? 0的算術平方根有幾個?
(3)2、-5、-6有算術平方根嗎?為什么?
4、按課本第4頁例題1格式求下列各數的算術平方根:
(1)625(2)0. 81;(3)6;(4) (5) (6)
二、合作探究:
1、閱讀課本第5頁利用計算器求算術平方根的方法,利用計算器求下列各式的值。
(1) (2) (3)
2、利用計算器求下列各數的算術平方根
a2000020020.020.0002
通過觀察算術平方根,歸納被開方數與算術平方根之間小數點的變化規律
3、在 中, 表示一個 數, 表示一個 數,算術平方根具有
練習:若a-5+ =0,則 的平方根是
三、學習:
本節課你學到哪些知識?哪些地方是我們要注意的?你還有哪些疑惑?
四、自我測試:
1、判斷下列說法是否正確:
①5是25的算術平方根;( )②-6是 的算術平方根; ( )
③ 0的算術平方根是0;( ) ④ 0.01是0.1的算術平方根; ( )
⑤一個正方形的邊長就是這個正方形的面積的算術平方根. ( )
2、若 =2.291, =7.246,那么 =( )
A.22.91 B. 72.46 C.229.1 D.724.6
3、下列各式哪些有意義,哪些沒有意義?
4、求下列各數的.算術平方根
①121 ②2.25 ③ ④(-3)2
5、求下列各式的值 ① ② ③ ④
思維拓展:
1、一個數的算術平方根等于它本身,這個數是 。
2、若x=16,則5-x的算術平方根是 。
3、若4a+1的平方根是±5,則a的算術平方根是 。
4、 的平方根等于 ,算術平方根等于 。
5、若a-9+ =0,則 的平方根是
6、 的平方根等于 ,算術平方根是 。
7、 ,求xy算術平方根是。
數學小知識——怎樣用筆算開平方
我國古代數學的成就燦爛輝煌,早在公元前一世紀問世的我國經典數學著作《九章算術》里,就在世界數學史上第一次介紹了上述筆算開平方法.據史料記載,國外直到公元五世紀才有對于開平方法的介紹.這表明,古代對于開方的研究我國在世界上是遙遙領先的.
1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11'56),分成幾段,表示所求平方根是幾位數;
2.根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3);
3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第 二段數組成第一個余數(豎式中的256);
4.把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商(3×20除256,所得的最大整數是 4,即試商是4);
5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小于或等于余數,試商就是平方根的第二位數;如果所得的積大于余數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);
6.用同樣的方法,繼續求平方根的其他各位上的數.如圖2所示分別求85264, 12.5平方根的過程。自己舉例試試!
解一元一次方程
4.2 解一元一次方程(第2 課時)
一、目標:
知識目標:能熟練地求解數字系數的一元一次方程( 不含去括號、去分母)。
過程方法目標:經歷和體會解一元一次方程中“轉化”的思想方法。
情感態度目標:在數學活動中獲得成功的喜悅,增強自信心和意志力,激發學習興趣。
二、重難點:
重點:學會解一元一次方程
難點:移項
三、學情分析:
知識背景:學生已學過用等式的性質來解一元一次方程。
能力背景:能比較熟練地用等式的性質來解一元一次方程。
預測目標:能熟練地用移項的方法來解一元一次方 程。
四、教學過程:
(一)創設情景
一頭半歲藍鯨的體 重是22t,90天后的體重是30.1t,藍鯨的體重平均每天增加多少?
(二)實踐探索,揭示新知
1.例2.解方程: 看誰算得又快:
解:方程的兩邊同時加上 得 解: 6x ? 2=10
移項得 6x =10+2
即 合并同類項得
化系數為1得
大家看一下有什么規律可尋?可以討論
2 .移項的概念: 根據等式的基本性質方程中的某些項改變符號后,可以從方程的一邊移到另一邊 ,這樣的 變形叫做移項。
看誰做得又快又準確!千萬不要忘記移項要變號。
3.解方程:3x+3 =12,
4.例3解方程: 例4解方程 :
2x=5x-21 x- 3=4-
5.觀察并思考:
①移項有什么特點?
②移項后的化簡包括哪些
(三)嘗試應用 ,反饋矯正
1.下列解方程對嗎?
(1)3x+5=4 7=x-5
解: 3x+ 5 =4 解:7=x-5
移項得: 3x =4+5 移項得:-x= 5+7
合并同類項得 3x =9 合并同類項得 -x= 12
化系數為1得 x =3 化系數為1得 x = -12
2解方程
(1). 10x+1=9 (2) 2—3x =4-2x;
(四)歸納小結
1.今天學習了什么?有什么新的簡便的寫法?
2.要注意什么?
3. 解方程的 一般步驟是什么?
4.. (1) 移項實際上 是對方程兩邊進行 , 使用的是
(2)系數 化為 1 實際上是對方程兩邊進行 , 使用的是 。
(3)移項的作用是什么?
六、1.課堂作業:課本習題4.2第二題
2.家作:評價手冊4.2第二課時
1、若方程 4x ? 3 ( a ? x ) = 5x ? 7 ( a ? x )
的解是 x = 3 ,求a的值.
2.對于關于 x 的方程
2 k x = ( k + 1 ) x + 6 ,
當整數 k為何值時,方程的解為整數?
【平方根2教學設計】相關文章:
《碧螺春》教學設計2篇03-05
誡子書教學設計2篇05-08
永生的眼睛教學設計2篇04-04
《小石城山記》教學設計2篇04-28
《白鷺》第2課時教學設計03-30
《麥琪的禮物》教學設計2篇03-04
《金黃的大斗笠》教學設計2篇03-03
《最好馬上找到他》教學設計2篇03-03
《一件好事》教學設計(2篇)03-02
《關伊子教射》教學設計2篇03-05