人教版三角形內角和教學設計
《三角形的內角和》是人教版數學四年級下冊第五單元的一節課,是在學生學習了三角形的特征以及三角形分類的基礎上,進一步研究三角形三個角的關系。課堂上我注意留給學生充分進行自主探究和交流的空間,讓學生探索、實驗、發現、討論交流、推理歸納出三角形的內角和是180°。以下是關于人教版三角形內角和教學設計,僅供參考!
教學內容 :課本P85例5
教學要求:
1.通過動手操作,使學生理解并掌握三角形的內角和是180°的結論。
2.能運用三角形的內角和是180°這一規律,求三角形中未知角的.度數。
3.培養學生[此文轉于斐斐課件園 FFKJ.Net]動手動腦及分析推理能力。
教學重點 三角形的內角和是180°的規律。
教學難點 使學生理解三角形的內角和是180°這一規律。
教學用具 每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。
自學預設:自學課本第85頁的例題5及“做一做“
1、什么叫三角形的內角?
2、畫兩個大小不同的任意形狀的三角形,然后用量角器測量三角形的三個角的度數,并把它們相加,看看有什么特點?
3、練習設計:
一、它們說得對嗎?
1、鈍角三角形:我的兩個銳角之和大于90o。
2、直角三角形:我的兩個銳角之和正好等于90o。
3、等腰三角形:等腰三角形沿高對折,每個三角形的內角和是90o。
二、已知∠1、∠2、∠3是三角形中的三個內角。
1、∠1=45o ∠2=65o ∠3=( )。這是( )三角形。
2、∠1=20o ∠2=50o ∠3=( )。這是( )三角形。
3、∠2=15o ∠3=75o ∠1=( )。這是( )三角形。
三、已知∠1和、∠2是直角三角形中的兩個銳角。
1、∠1=80o ,求∠2。
2、∠2=45o ,求∠1。
四、已知等腰三角形的一個底角是55o,它的頂角是多少度?
教學過程(本文來自優秀教育資源網斐.斐.課.件.園):
一、自學反饋
1.投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內角。(板書:內角)
2.三角形三個內角的度數和叫做三角形的內角和。(板書課題:三角形的內角和)今天我們一起來研究三角形的內角和有什么規律。
3.以小組為單位先畫4個不同類型的三[內容來于斐-斐_課-件_園 FFKJ.Net]角形,利用手中的工具分別計算三角形三個內角的和各是多少度?
4.指名學生匯報各組度量和計算的結果。你有什么發現?
5.大家算出的三角形的內角和都接近180°,那么,三角形的內角和與180°究竟是怎樣的關系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。
6.剛才我們計算三角形的內角和都是先測量每個角的度數再相加的。在量每個內角度數時只要有一點誤差,內角和就有誤差了。我們能不能換一種方法,減少度量的次數呢?
二、重點點撥:
1、可以把三個內角拼成一個角,就只需測量一次了。
2、.請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。
3.三個角拼在一起組成了一個什么角?我們可以得出什么結論?(直角三角形的內角和是180°)
4.拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發現了什么?(直角三角形和鈍角三角形的內角和也是180°)
5.那么,我們能不能說所有三角形的內角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11.老師板書結論:三角形的內角和是180°。
6.一個三角形中如果知道了兩個內角的度數,你能求出另一個角是多少度嗎?怎樣求?
7.出示教材85頁做一做。讓學生試做。
8.指名匯報怎樣列式計算的。兩種方法均可。
∠2=180°-140°-25°=15°
∠2=180°(140°+25°)=15°
三、鞏固練習
1.88頁第9題
這一題是不是只知道一個角的度數?另一個角是多少度,從哪看出來的?獨立完成,集體訂正。
直角三角形中的一個銳角還可以怎樣算?
2、88頁第10題
①等腰三角形有什么特點?(兩底角相等)
②列式計算 180°-70°-70°=40°或
180°-(70°×2)=40°
2.88頁第10題
①連接長方形、正方形一組對角頂點,把長方形、正方形分成兩個什么圖形?
②一個三角形的內角和是180°,兩個三角形呢?
四、布置作業
【人教版三角形內角和教學設計】相關文章:
《三角形內角和》教學設計(通用6篇)07-20
多邊形的內角和教學設計02-19
人教版灰雀教學設計04-02
《牛和鵝》 教學設計03-24
《開花和結果》教學設計12-12
《銳角和鈍角》教學設計08-21
小學數學《三角形的特性》教學設計06-26
《元帥和小棋手》教學設計03-03
《比和比例復習》教學設計04-05
8和9的教學設計09-11